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Abstract 

Stochastic methods are described here to predict the effects of nonlinear ship loads 

on fatigue accumulation in random seas. These are found to be capable of predicting 

the net fatigue damage over many ship response cycles, at a fraction of the cost of 

direct time-domain analysis. It is also shown how these nonlinear ship load models 

can be used within a full reliability analysis of ship components. This uses first-order 

reliability methods to estimate not only the net effect of all uncertainty sources, but 

also the relative contribution of each (e.g., load vs. material property variability). In 

our ship load application, nonlinear effects are found to increase the relative impact 

of load (and wave) modelling and its uncertainty. 

The ship load analysis for fatigue is based on a new concept, the "narrow-band 

transfer function" (NTF) method. The basic idea is to apply the nonlinear time- 

domain ship load analysis to a limited set of regular, sinusoidal waves. This estab- 

lishes the narrow-band transfer function; i.e., the ship load amplitude from nonlinear 

analysis as a function of the wave amplitude and period. Stochastic process theory is 

used both to select which regular waves (i.e., heights and periods) to use, and to de- 

cide how these results should be weighted in predicting load statistics in an irregular 

sea. 

The result is compared with full nonlinear analysis of a specific ship over long 

simulations of an irregular sea. A ship with relatively flared cross-section is chosen, 

which shows marked nonlinearity and hence asymmetry in its positive and negative 

(sag and hog) mid-ship bending moment. The NTF method is shown to accurately 

predict the results of the long nonlinear simulations. This suggests great reduction in 

analysis costs: time-domain analysis over many cycles of an irregular sea is replaced 



by a limited number of regular wave analyses. Similar methods have been found 

useful in other ocean engineering contexts; e.g., predicting loads and motions of fixed 

offshore structures. 
Finally, we show a fatigue reliability example for this ship structure where the 

probability of failure is found by integrating the uncertainties at all three levels: 

the wave climate, the structural response given the wave climate and the material 

properties. Here an efficient method is also shown to select the associated design 

parameters in order to achieve a preselected reliability level. 
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Chapter 1 

Nonlinear Ship Loads: Stochastic 

Models for Fatigue Analysis 

1.1    Introduction 

Fatigue cracking in ship details can lead to much expensive repair and should be 

considered in design of structural elements. A ship is typically designed to have a 

service life of about 20 years, during which it undergoes millions of load cycles that 

may result in fatigue cracks. In general, the fatigue hot spots can be at the ship 

bottom, the side shell, or in the main deck. A Swedish study conducted on 85 ships 

(see [26]) for damage due to cracks, deformations, and corrosion suggested that about 

70% of the damage was due to fatigue. 

Existing recommendations, (see [1,7]) for fatigue analysis and design (outlined in 

the following sections) either tend to be limited in accuracy of load analysis and hence 

fatigue damage, or are prohibitive in terms of computational resources. The study 

here suggests an approach that efficiently uses state-of-the-art nonlinear ship analysis 
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tools to accurately predict fatigue damage without the heavy computational burden. 

This method also finds application in fatigue analysis of side shells [13] and in extreme 

ship-response analysis [35]. 

Note that this study is part of the doctoral studies of the author and this report 

has largely been adapted from the author's thesis [16]. 

1.2    Ship Model 

The fatigue reliability studies presented here are demonstrated for ships and in general 

should be applicable to any offshore structure that responds primarily in a quasi-static 

manner to the wave loads. We focus here on a monohull ship with flared cross-sections. 

A body plan and a strip model of this ship are shown in Figure 1.1 and the main 

particulars of the ship are given in Table 1.1. The cross-section of the ship changes 

along the length of the ship with flared cross-sections at the ends of ship and box 

cross-sections towards mid-ship (see Fig. 1.1b). The ship-equipment mass and the 

ship dead-weight cause nonuniform mass distribution along the ship. A ship moving 

in the waves is subjected to many kinds of loads: vertical and horizontal bending 

moments, torsional moments, side shell intermittent water pressures, etc. In this 

study we consider only the mid-ship vertical bending moments (or equivalent mid- 

ship bending stresses) as loads on the ship (see Fig. 1.2). The sagging condition 

causes tensile stresses in the ship bottom, while the hogging condition may extend 

fatigue cracks in the ship deck. Lateral side shell or torsional loads are not considered 

in this study; however, the methodology developed here should be equally applicable 

for these loads as well. 

The ship is assumed to be rigid and respond to the wave loads in heave and 
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Table 1.1: Main Particulars of Ship presented in Fig. 1.1 

Specification  Value 
Length between perpendiculars 166m 
Beam 24.65m 
Draught 8.85m 
Weight 2xl05kN 
Waterplane Area 2.84xl03 sq.m 

pitch degrees of freedom. We use a strip theory analysis program NV1418 [5,11] 

to perform a time domain estimation of the ship loads. This program is limited to 

head seas loads. While no slamming or water on deck are considered, we integrate 

the water pressures to the exact wetted surface to find the rigid body forces on the 

ship and the resulting mid-ship bending moments. The pressure integration to the 

instantaneous wetted surface, and the flared hull cross-section, contribute primarily 

to the nonlinearity in the ship loads. The sag bending moments are typically larger 

than the hog bending moments, for example. A linear analysis, on the other hand, 

is based on the assumptions of small ship oscillations arid, consequently, the bending 

moments do not show any nonlinearity (see Sec. 1.4.1). 

1.3    Stochastic Fatigue Analysis 

A general approach to fatigue analyses in reliability-based fatigue design, is to use 

available fatigue test data [29]. Typically, in fatigue tests a specimen undergoes 

constant amplitude S cyclic loading and the number of cycles N to "fail" is recorded. 

A linear fit to logS vs. \ogN, called an S-N curve, provides the following relation: 

N = CS~b (1.1) 
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(b) Strip Model 

Figure 1.1: Model of monohull ship that will be analyzed using strip theory 
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Figure 1.2: Sag and Hog Bending Condition of Ship in Waves 

where C and b are the intercept and the slope of the fitted curve. This relation gives 

the mean number of stress loading cycles N with amplitude S that a fatigue specimen 

can tolerate before failing [12]. The material factor C, in general, shows a large scatter 

(coefficient of variation on the order of 50 to 60%). Typical values of the exponent b 

for steel material may be 3-6, and may be as high as 7-10 for composite materials. 

Values of S-N parameters for offshore structure materials and their uncertainties can 

be found in various literature, including API [2] and SSC reports [26] among others. 

For real structures, however, the loading is random in nature and we need to relate 

the random stress amplitudes to the number of cycles to fail. The Palmgren-Miner 

linear cumulative damage hypothesis [12] may be used to apply the S-N relation to 

estimate the fatigue damage from a random stress history. Linearity of this hypothesis 

lies in the absence of any sequence effects of the random stresses.   The hypothesis 
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estimates the mean damage due to a single stress cycle with amplitude s to be 1/NS, 

where Ns = Cs'b is the mean number of cycles to fail at stress amplitude s. Thus, 

according to this hypothesis, the mean damage D in N cycles from a random stress 

history, whose stress amplitudes have probability density function fs(s), is 

D = r mg&j,=£ r s"fS(s)ds=wwm       0.2) 
Jo        Ns C Jo 

where N = uT is the number of stress cycles in a given duration T due to a stress cycle 

rate v. The mean value of the 6-th power of S can be found once its distribution fs{s) 

is known. Note that E[Sb)/C is the mean damage per cycle, and uE[Sb]/C is then 

the mean damage rate (damage per unit time) which when multiplied by a duration 

T gives the mean damage D in T. For high-cycle rate applications, variations about 

the mean damage per cycle will average out quickly, so that the actual damage in 

time T can be quite accurately approximated by the mean damage D in time T. The 

following section outlines a few approaches typically used to identify fs(s). 

1.3.1    Existing Approaches to Fatigue Analysis 

This section briefly summarizes the existing approaches to model the distribution 

of the stress load cycles. According to existing guidelines for fatigue analysis (for 

example, [7]) we need to formulate the long-term stress distribution fs(s) for the 

structural component. Some ways to find it are: 
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1. Simplified analysis in conjunction with ship guidelines: 

fs(s) can be modeled as a Weibull distribution: 

P[S>s] = exp[-(s/ß)a] (1-3) 

where a and ß are the shape and the scale parameters of the distribution. The fr-th 

moment of a Weibull S is given as 

E[Sb] = ßbT (1 + b/a) (1-4) 

where T(u) = /0°° <tt_1e~*di for u > 0 is the Gamma function. 

Simple empirical rules (or more refined long-term analysis) may be used to find 

a. For example, Ref. [7] suggests a « 2.21 - 0.541og10(£) for fatigue analysis of deck 

longitudinals, where L is the ship length in meters. The second parameter ß is then 

found from an estimated stress value at a known fractile in the distribution. This 

stress is found by performing a detailed analysis due to an assumed wave cycle that 

is likely to result in stresses at the desired fractile. Although this method permits 

a quick and simple fatigue analysis scheme, drawbacks do exist. For example, ß 

is tuned to a single stress analysis and may be sensitive to the choice of the stress 

return period. This can, of course, be resolved by tuning ß to different stresses and 

studying the consequence on fatigue damage estimates. Another problem that still 

exists, however, is how do we select a wave (or the wave parameters: height H and 

period T) that should result in stresses with a desired return period? If the response 

given a wave with height H were deterministic, and if T varied deterministically with 

H, then the return period of the wave would exactly be the return period of the 

resulting stress. In general, the response given a wave is random (also T given H is 
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random) and hence the difficulty in identifying the wave. 

2. Long-term stresses based on long-term climate conditions: 

The long-term wave climate is divided into short-term climatic conditions called seast- 

ates. The duration of a seastate, typically 1-6 hours, reflects the time in which the 

waves can be assumed to be stationary. Parameters typically chosen to characterize a 

seastate are the significant wave height Hs, defined to be four times the wave elevation 

standard deviation a„, and the peak spectral period Tp. A ship response analysis in 

irregular waves (see Sec. 1.4) could then provide the stresses as a function of Hs and 

Tp. This leads to the long-term stress distribution 

fs(s) = ff fs\H„Tp(
s\hs>tp) fH.,Tp{hs,tp) dhsdtp (1,5) 

where fs\H„Tp{s\hs,tp) is the conditional probability density function of stresses given 

Hs and Tp, and fii„Tp(hs,tp) characterizes the long-term joint probability density of 

the seastate parameters. Such joint distributions, characterized for many ship routes 

around the world, can be found in the literature, for example see Ref. [8]. Note the 

stress cycle rate v{hs, tp) may also be a function of the seastate parameters hs and tp. 

In this case, one needs to consider a weighted form of fs(s) above; e.g., 

, , _ // v(h„tp)fs\H„Tp(s\hs,tp)fH„Tp{hs,tp) dhsdtp ^ ß. 
fs{S) ~ II v{hs, tp)fH„Tp(hs, tp) dhs dtp 

Alternatively, with normalized damage (per cycle) given by Sb, long-term mean 

damage must consider not just E[Sb\Hs,TP] but more generally the mean damage 

v(Hs,Tp)E[Sb\Hs,TP} per unit time (as in section 1.5). 

An alternative approach (see, for example, API [2]), would be to use the local 
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wave heights (wave height if in a single wave) to characterize the wave climate and 

relate the stresses directly as a function of the wave height H. fs(s) then based on a 

long-term distribution of the local wave heights /H(/I) is 

fs(s) = Jfs\H(s\h)fH(h)dh (1.7) 

in which fs\H(s\h) is the probability density of stresses S given the local wave height 

H. This method does not explicitly assume dependence of stresses on the wave 

periods. 

1.4    Ship Response Analysis Methods 

This section discusses different methods to perform a ship response analysis to find 

the stresses given the climate conditions. These methods differ in the complexities 

of the hydrodynamical and mechanical models used to perform the analysis. For 

example, a linear analysis (see below) is based on small ship oscillations, while a 2-D 

strip theory, studied here, accounts for the ship position in the wave and integrates 

the water pressure to the exact wave surface. This approach can be extended to 

perform a 3-D analysis accounting for fluid-structure interaction effects. 

• Linear Ship Load Analysis: A linear analysis is used to find the Linear 

Transfer Function (LTF) that relates waves to ship loads for a ship traveling at 

a given speed. In this study, a strip theory is used to estimate the linear loads 

by integrating the water pressures to the mean water level [33]. In a short-term 

seastate (typically of 1 to 6 hours duration), the ship load is assumed to be 

Rayleigh distributed with the load standard deviation o (and stress cycle rate) 

found from the spectrum of linear loads. A weighted Raleigh distribution across 
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all seastates accounting for different ship speeds, and the long-term distribution 

of the seastates, may then in turn be used to directly find E[Sb], or to calibrate 

an equivalent Weibull model, which may then used to find E[Sb]. Although 

still a linear analysis, this approach includes the frequency content in the load 

estimation and is computationally inexpensive. 

• Nonlinear Ship Load Analysis: State-of-the-art 3-D nonlinear ship analysis 

tools like SWAN [18,27], Lamp [19,20], and USAERO [4], for example, can 

be used to estimate the global loads. In this study, we use a 2-D strip theory 

[5,11], as described in Sec. 1.2, to estimate the loads on a ship, and then find 

the resulting fatigue damage. Such tools perform increasingly complex nonlin- 

ear analyses to gain accuracy in the load estimates; the computational burden 

increases in intensity, however. We need to use these expensive tools minimally 

to predict fatigue damage with the least computational burden. 

In the following section, we demonstrate the need to perform a nonlinear load 

analysis, instead of a linear one, to estimate fatigue damage, and then propose a new 

approach to perform such a nonlinear damage estimate. 

1.4.1    Comparison of Ship Response from Linear and Nonlin- 

ear Analyses 

We compare the ship loads (mid-ship bending moments) from linear and nonlinear 

analyses in an irregular sea to emphasize the effects of nonlinearities in the loads. 

The example sea chosen here is described by a JONSWAP spectrum with significant 

wave height Hs = 5m, spectral peak period Tp = 10s, and peakedness factor 7 = 3.3. 

The ship is assumed to be traveling at a speed of 10 knots (=5.144 m/s) into a head 
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Figure 1.3: Linear Transfer Function for Mid-ship Bending Moment Response 

sea. The linear bending moments are estimated from a linear transfer function (see 

Fig. 1.3) relating the wave elevation process r)(t) to the mid-ship bending moments. 

Note that the linear transfer function peaks at about / = 0.1Hz, or wavelength 

= 156 m (from linear dispersion relation). This is close to the ship length and so 

this chosen sea reflects a ship-length tuned sea. The nonlinear history is estimated 

from NV1418 using a 2-D strip theory [5,11]. Partial mid-ship time histories of the 

Gaussian waves, the linear bending moments, and the nonlinear bending moments 

from an hourly analysis are shown in Figure 1.4. 

The sag bending moments (positive peaks) are typically larger than the neighbor- 

ing hog bending moments (absolute value of negative peaks) in the nonlinear load 

history, while the bending moments are symmetrically distributed in the linear load 

history. Note that the range bending moment (=sag+hog) is also, on average, smaller 
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Figure 1.4: Partial wave and response histories at mid-ship 
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Table 1.2: Statistics of Ship Load History 

Linear Analysis Nonlinear Analysis 
Mean // 
Sigma a 
Skewness 0:3 
Kurtosis 0:4 

0 
1.06xl05 kN.m 

0 
3.0 

0.21 xlO5 kN.m 
1.36xl05 kN.m 

0.6 
3.4 

from the linear analysis. The history statistics of the two analyses are given in Ta- 

ble 1.2. The skewness of 0.6 in the nonlinear history provides a measure of the marked 

asymmetry between the sag and hog bending moments. Note also that standard de- 

viation of the linear history is approximately 30% smaller than that of the nonlinear 

analysis. This may be due to the limitation of the small oscillation assumption in 

linear theory, which thereby ignores the increasing nonlinearity as the length of the 

waves approach the ship length (see Fig. 1.3). Owing to the smaller sag bending mo- 

ments from linear theory and the resulting smaller ship keel (bottom) tensile stresses, 

the rate of crack growth will be considerably underpredicted by linear theory. 

Fig. 1.5 compares the fatigue damage from the linear analysis to that from the 

nonlinear analysis. The linear fatigue damage DL in duration Td is (see Eqn. 1.2): 

DL = TduQE[Sb) (1.8) 

in which vQ is the stress cycle rate and E[Sb] can be found from Eqn. 1.4, where 

for a Rayleigh stress (due to linear theory) distribution a = 2 and ß = y/2a. Note 

that in Eqn. 1.8, we have ignored the S-N coefficient C and the section-modulus in 

converting bending moments to stresses. These are treated as material constants and 

will cancel out when looking at ratios of damage estimates. 
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The fatigue damage DNL is estimated from 20 hours of simulated nonlinear re- 

sponse in irregular waves in this seastate and is given as 

DNL = TdvQE[Sb) = J:s\ (1.9) 
i=i 

in which N is the total number of stress cycles, and Si, i = 1...N are the sag, 

hog or range stresses seen in 20 hours. In this study, we will refer to DNL as the 

"exact" damage estimate and ask how close are the damage estimates from simpler 

prediction models. A comparison of linear to nonlinear fatigue damage shows that the 

sag-induced fatigue damage can be considerably underpredicted by the linear model. 

Linear hog damage is closer to the nonlinear hog damage, since the predicted hog 

bending moments from linear theory seem close to those from the nonlinear analysis 

(see Fig. 1.4). Recall that hog bending moments occur due to wave crests near mid- 

ship (see Fig. 1.2) where the cross-section is box-like, and so there, indeed, is potential 

for linear theory to correctly predict hog bending moments. As a net effect of sag and 

hog, the range fatigue damage is also underpredicted by the linear model, although, 

to a lesser extent than the sag underprediction. 

As seen in Fig. 1.5, a nonlinear analysis of sag-induced fatigue for a flared ship can 

provide larger fatigue damage estimates than a linear analysis, particularly for large 

values of the fatigue exponent b. Such a nonlinear analysis is computationally inten- 

sive, however, and is thus an expensive solution to find accurate damage estimates. 

In this study, we look at an alternative method to estimate damage from nonlinear 

ship loads. This method is referred to here as a "Nonlinear Transfer Function" (NTF) 

model, as described in Section 1.5. 
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Figure 1.5: Comparison of fatigue damage from linear and nonlinear analysis for sag, 
hog and range bending moments 

1.5    Proposed NTF Approach 

In this study, we propose an NTF model to estimate ship loads and the resulting 

fatigue damage. In this model, we apply the expensive nonlinear analysis to find 

stresses for only a limited, carefully selected set of wave amplitudes and frequencies. 

As the force analysis may be rather complex, a minimal set of amplitude and frequency 

values is chosen. The results are then appropriately weighted to reflect the amplitude- 

frequency distribution of actual random waves. The numerical set of stress values 

for the selected waves represents what we call the "Nonlinear Transfer Function". 
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The stresses from this limited set of waves, in combination with their associated 

probability weights, can be used to estimate the resulting fatigue damage estimate. 

This cheaply estimated fatigue damage is intended to approximate the relatively 

expensive, exhaustively simulated damage from a complete irregular nonlinear time 

domain analysis. 

We will first confirm out theoretical distributions of the wave amplitudes and fre- 

quencies by comparing the results with simulated random waves. We then investigate 

the adequacy of such waves in successfully predicting the load statistics. This is done 

by comparing the regular wave results to a corresponding complete random wave 

analysis. 

We test this model by comparing, in this example seastate (Hs = 5m, Tp = lOsec), 

the predicted damage to the exact damage from Eqn. 1.9. Linear theory predicts this 

seastate to be about the most damaging seastate for an S-N exponent 6 = 4 (chosen 

to reflect steel materials), as explained below. 

In linear theory, the ship load (stress) process X is assumed to be Gaussian and 

hence the sag (or hog) bending moments (or stresses S) are Rayleigh distributed. The 

mean damage rate E[Dr\Hs,Tp] given Hs and Tp can then be written (from Eqn. 1.8) 

as 

E[Dr\H„Tp] = E[uSb\Hs,Tp\ = u(Hs,Tp) (V2a(Hs,Tp))"r(l + 6/2) (1.10) 

where a(Hs,Tp) is the standard deviation and v{Hs,Tp) is the cycle rate of process 

X, both of which are seastate-dependent. The total long-term damage DLT is 

DLT = TdjJE[DT\Hs,Tp) fHs,Tp{hs,tp) dhs dtp (1.11) 
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in which the integrand E[Dr\Hs,Tp] fH„Tp(hs,tp) is the contribution to DLT from 

each seastate (sometimes called the damage density) and is shown in Fig. 1.6 for a 

joint distribution model of Hs, Tp, representing Northern North Sea data as suggested 

in [14]. The damage density is largest in approximately Ha = 5m, Tp — lOsec, and 

because large linear loads probably imply large nonlinear loads, as seen in Fig. 1.4, we 

choose this example seastate to study the accuracy of the NTF model. Note however 

the modeling errors may be greater in this seastate than in DLT\ we use this seastate 

to most severely test the NTF model and not to suggest typical errors to be expected 

in estimates of DLT, the long-term damage. 

1.5.1    NTF Modeling Issues 

As proposed, the idea of the NTF model is to find reliable estimates of fatigue damage 

from a limited set of wave runs rather than performing expensive nonlinear analyses 

across all the climate conditions. The key issues in the development of this model 

are: 

• Selection of waves from theory: The selection of wave parameters (here 

the wave height and the wave period) and their associated probabilities of oc- 

currence is based on stochastic theory. Each of the selected waves is stepped 

through the nonlinear time domain analysis to estimate the ship loads. The 

questions that arise here are: how accurately does this stochastic theory char- 

acterize the waves? And how many waves should we choose to robustly estimate 

fatigue damage? We will address the first issue in Section 1.5.2 in more detail. 

The second issue will be discussed by choosing different numbers of selected 

waves and then comparing the resulting fatigue damage estimates to simulated 

data. 
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Figure 1.6: Damage density from a linear analysis vs. long-term seastate parameters. 
The damage rate shown has been normalized by the largest value. 

• Inclusion of spatial wave effects: In order to include the spatial wave effects, 

stepping the ship through just one wave cycle may not suffice in estimating the 

ship loads. This is because at any given time instant the loads depend on the 

spatial waves across the ship, and on the position of the ship in these waves. 

We may need to include such spatial effects in the limited wave runs. We hope 

to achieve this by constructing "most-likely" side wave cycles around each of 

the selected waves, and then stepping the ship through this triplet to find the 

resulting ship loads. We address this issue further in Section 1.5.3. 
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1.5.2    Selection of Waves from Stochastic Theory 

A sinusoidal wave can be defined by two parameters, a wave height H and a wave 

period T. We verify theoretical distributions of H and T with simulated random 

waves. For waves in an irregular time histories (see, for example, Fig. 1.4a), we select 

Ws and T"s from all the wave cycles; a wave cycle is defined as the wave surface 

between two successive mean-upcrossings of the wave surface. H is the elevation 

difference between the highest and the lowest points in a wave cycle and T is the time 

duration between the mean-upcrossings of a wave cycle. Note that this definition of 

wave cycle, and corresponding H and T, is introduced here simply to permit critical 

comparison of separate parts of the NTF model prediction - e.g., f(H, T) and D\H,T. 

These precise definitions do not effect the actual calculation of the nonlinear damage 

Dm, nor of its estimate DNTF from the NTF model. 

Wave Heights from Theory 

The wave heights of the selected waves are sampled from the Forristall [10] distribution 

which is an empirical distribution fitted to observed ocean wave heights. For the 

Gaussian seastate we are considering (represented by a JONSWAP spectrum with 

Hs = 5 m, Tp — 10 sec, and 7 = 3.3), Figure 1.7 shows a comparison of 20 hours of 

simulated wave heights to the Forristall distribution and the Rayleigh distribution of 

wave heights. The cumulative distribution function (CDF) of the wave heights H is 

given as 

FH{h) = P[H < h] = 1 - exp (W 
ß 

(1.12) 
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where <r„ is the standard deviation of the wave elevation process r)(t), and a = 2, 

ß = 8 for the Rayleigh distribution and a = 2.126, ß = 8.42 for the Forristall dis- 

tribution (from empirical fits). Note that the Rayleigh distribution is a theoretical 

distribution for a narrowband Gaussian r)(t), and to the degree 7?(i) is not narrow- 

band, the Rayleigh distribution will tend to overestimate wave height fractiles with 

respect to simulated Gaussian behavior. In Fig. 1.7, the Rayleigh distribution indeed 

overpredicts wave heights, while the Forristall distribution offers a closer fit to the 

simulated wave heights. Similar comparisons of the Forristall model with simulated 

second-order waves were also found in the wave studies conducted in Reference [15]. 

We will choose the Forristall model to generate the wave heights for the NTF model. 

Theoretical Wave Periods given Wave Heights 

Given the wave height H, we predict statistics of the wave period T for the sinusoid 

from the Longuet-Higgins conditional distribution [22-24,35] of wave periods given 

wave heights. This distribution, based on envelopes of narrowband processes, spec- 

ifies a truncated normal distribution of wave frequencies ft = 27r/T given the wave 

amplitude a = H/2 as 

P[n>u]a] = _LgzA (1.13) 

where P[ft > u\a] is the probability that ft exceeds a specified w value given a and 

$() is the standard normal CDF. To = Ai/A0 is a mean wave frequency in terms of 

the wave spectral moments Aj = JulSr,(u}) du). av = y/Xö, and A = y/XQ^/K - 1 

is a unitless spectral bandwidth measure. For example, A = 0.42 for a Pierson- 

Moskowitz spectrum, and decreases from this value for a JONSWAP spectrum with 
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Figure 1.7: Comparison of simulated wave heights to Forristall and to Rayleigh dis- 
tributions 

7 > 1. Similar models for the conditional distribution have been proposed by Canavie 

et al. [6] and Lindgren and Rychlik [21]; however, these require at least the fourth 

spectral moment, which is not generally available for wave spectra and so we propose 

not to use these models for the fatigue analysis studies. In this study, instead of 

the central period we take T = 0.92Tp (e.g., [25]) and with this modification we will 

henceforth refer to this conditional wave period distribution as a "modified" Longuet- 

Higgins distribution. Note that T = 0.92TP seems to match asymptote wave period 

of the data, while the central period is smaller than this asymptote wave period. 

The asymptotic conditonal mean wave period is larger than the central period due 
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to bandwidth effects present in the data. Recall that the original Longuet-Higgins 

theory is based on narrow-band assumptions. For the example seastate, we find 

Tc = 27I-/ÖJ = 8.35 sec, while T = 0.92TP = 9.2 sec. and matches the asymptotic 

conditional mean quite closely (as we show next). 

To select wave periods in the NTF model, we can relate the frequency fractile UJP 

for a given a in the Longuet-Higgins model to the requested probability p. This is 

done by setting Eqn. 1.13 equal to 1 - p 

u)      Tp a 
(l-p)$ ffA 

(1.14) 

We compare 20 hours of simulated wave period in this example seastate to the 

wave periods from this modified Longuet-Higgins model. Figure 1.8 shows a com- 

parison of the 16-, 50- (median), and 84- percentile values of wave periods from 

simulation to those predicted from Eqn. 1.14. For wave heights greater than 3 meters 

the modified Longuet-Higgins model offers a reasonable approximation to simulated 

wave periods at the median values and also at the 16 and 84 percentile values of 

the conditional distribution. For small wave heights, the theoretical wave periods are 

larger than the simulated periods; however, there is negligible contribution to fatigue 

damage from these small-height waves, and so, from a fatigue damage standpoint, 

the modified Longuet-Higgins model appears to offer a satisfactory approximation to 

the conditional distribution of wave periods given a wave height. 

Finally, given a count of the waves to be selected, the choice of wave heights and 

wave periods given wave heights could, for example, be based on quadrature points. 

Say, 30 waves are to be selected, as will be used in this study later on. We may mesh 

the H-T space, so that we have 10 different H values and 3 different T values per H 

value adding up to 30 waves.  We could first select 10 standard normal variables u 
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Figure 1.8: Simulated wave period vs. modified Longuet-Higgins wave period 

at Gauss quadrature points and then transform these to H values according to the 

fractile p of u 

H = ß[-log(l-p)]^a (1.15) 

Given an H value, we can use Eqn. 1.14 to similarly obtain three T values at 16, 50 

and 84 fractiles, for example. The joint occurrence probabilities of the H-T pairs can 

then be easily found from weights associated with H quadrature points (==P[U = Uj]) 

and from the conditional fractiles of T\H. 
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Figure 1.9: Relation of side wave height to middle wave height 

1.5.3    Selection of Side Wave Parameters 

Since a Gaussian sea has no horizontal asymmetry (reversing a Gaussian history does 

not change the history statistics), we assume the wave periods and the wave heights 

of the side waves to be the same. This results in a symmetric wave triplet. Let 

H0 and T0 denote the wave height and wave period of the side waves, respectively, 

and H and T denote the height and period of the middle wave, respectively (see 

Fig. 1.10). For the 20 hours of simulated Gaussian waves, we empirically relate 

E[H0\H] = 0.46(F/2)15 + 2 as shown in Fig. 1.9. This figure shows the mean, and 

mean± 1 standard deviation of H0 given various H values in the wave history. Note 
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Figure 1.10: Construction of Wave Triplet for NTF Load Prediction 

however that this empirical result is seastate-specific. Parametric study across a grid 

of H, Tp seastates could afford more general results. Alternatively, one may seek 

analytical results through probability theory. For example, linear regression suggests 

that 

E[H0\H] = m„ + pH,H0{H - mH) (1.16) 

Values of the mean wave height, mH, and the correlation pHjHo between successive 

heights, can be estimated by random vibration theory. 

For the Gaussian wave history, we find that T0 has negligible correlation with T in 

this seastate, so we let TQ given H0 be the median period from the modified Longuet- 

Higgins model, without conditioning the choice of T0 on T. Finally, we construct a 

wave triplet with three sinusoids in succession (see Fig. 1.10), where H0, T0 are the 

side wave parameters and H, T are the middle wave parameters. 
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1.6    Predicted NTF Fatigue Damage vs. Data 

In this section, we will predict fatigue damage from the NTF model and compare it 

to exact damage found from 20 hours of simulated stresses. Recall that the simulated 

stresses are obtained from the nonlinear ship response analysis of 20 hours of Gaussian 

waves. This analysis is done in a seastate with Hs = 5m and Tp = lOsec. For the 

NTF model, we will start out by predicting damage from 30 single sinusoidal waves, 

and investigate the necessity of imposing side waves on each of these 30 waves. We 

will then study the accuracy of predicted damage from a reduced set of waves, for 

example, 15 waves instead of 30 waves. 

For the NTF prediction, we select 30 waves (see Fig. 1.11) as the wave set to 

estimate the mid-ship bending moments. 10 equi-spaced wave heights are chosen for 

waves, with the maximum H value arbitrarily assumed at 10"6 exceedance probability 

(H with return period of approximately 1 in 1000 hours) according to the Forristall 

distribution [10]. This return period for H has been arbitrarily chosen to include 

large rare wave heights as well. We find the weights associated with these 10 H 

values from the Forristall distribution. Given the H values, the middle wave periods 

T are chosen to be at 16, 50 (median) and 84 percentile values according to the 

modified Longuet-Higgins distribution and are found from Eqn. 1.14 using p=0.16, 

0.5 and 0.84, respectively. In general, we could increase the number of waves in the 

set to gain greater accuracy in the predicted results; however, as demonstrated in the 

following sections these 30 waves seem to represent the simulated bending moment 

statistics adequately. For each wave height, the three selected wave periods were 

chosen to have equal probability weights of 1/3 each. Finally, the marginal weights 

of H can be multiplied with the conditional weights of T\H to find the joint weights 

Pj of the 30 H and T pairs. 
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Figure 1.11: Wave heights and periods for the 30 waves used in the NTF model 

Let Np = 30 denote the number of waves used to mesh the H-T space. Thus, 

the H-T space can be divided into Np cells centered around each of the selected H-T 

pairs. Let pj (j = 1... Np) denote the probability of "falling" in the jth cell. The Pj 

values can also be understood as the joint weights associated with the Np H-T pairs. 

The NTF predicted fatigue damage DP from the analysis using Np — 30 waves, then, 

is 
NP 

Dp = TduE[Sb] = £ rijSJ    ;     rij = NwPj (1.17) 
j=i 

where Sj is the predicted ship load, rij is the predicted number of wave cycles for the 

jih H-T pair, and Nw is the total number of predicted wave cycles in duration Td. 

Since the ship is moving into the waves the number of wave cycles encountered by the 

ship and the resulting number of stress cycles depends on the speed of the ship [9]. 
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The number of wave cycles Nw = uencTd, where uenc is the wave cycle rate encountered 

by the ship moving into the waves at speed u and is found from the theoretical (from 

wave spectrum) wave cycle rate u as: 

Wenc = w + u?u/g ; u) = 2-7TU (1-18) 

where venc = wenc/27r and g is the gravitational constant. For our example, v = 

0.128Hz for the example JONSWAP spectrum used and u =5.144m/s, thus vmc = 

0.182Hz. 

We will first consider whether we need side waves to "better" predict fatigue 

damage. We will investigate this by first predicting damage from sinusoidal waves 

without constructing side waves. For each of the 30 waves shown in Fig. 1.10, we 

construct a regular sinusoidal wave for each H-T value and step the ship through 

this one wave cycle to get a corresponding ship load (or stress) cycle. From this one 

load cycle, we pick the sag bending moment as the largest positive bending moment 

in the cycle. Similarly, the hog moment is the largest negative bending moment in 

the cycle. From the 30 sag or hog moments we can then use Eqn. 1.17 to find the 

predicted damage. Fig. 1.12 compares predicted damage for the selected set of 30 

waves without side waves. 

The sag damage seems to be underpredicted by about 25% at b = 1, 70% at 

6 = 4, and by about 90% at b = 10. Note, however, that this prediction is better 

than the linear sag damage shown in Fig. 1.5. Recall the linear model underpredicted 

damage by about 90% for b = 4 and by almost 2 orders of magnitude at b = 10. 

The predicted hog damage from the sinusoidal waves seems to be in good agreement 

over the range of b values shown. If, instead of the single-cycle bending moments, 

we look at the "steady-state" predicted bending moment for each of these sinusoidal 
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Figure 1.12:   Damage prediction from response to selected sinusoidal waves.   The 
single-wave cycle responses are used in this prediction. 

waves, we find some improvement in the predicted sag damage (see Fig. 1.13). By 

the steady-state moment, we mean the peak response of the ship after several cycles 

of the same wave so that the any transient effects will have stabilized. In this case, 

the model underpredicts sag damage by about 10% at b = 1 and by about 30% at 

b = 4. Note that for large b values the steady-state damage is now overpredicted (for 

example, by about 50% at b = 10). The hog damage is still in good agreement with 

simulated damage. 

If we predict damage based on the 30 waves, now with side waves (see Fig. 1.10), 

we find the predicted sag damage to be in good agreement with the simulated sag 

damage (see Fig. 1.14). This prediction seems to be very close to the exact damage, 

when compared with linear predicted damage in Fig. 1.5. The hog damage, however, 
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Figure 1.13: Damage prediction from response to selected sinusoidal waves. The 
steady-state responses to each of the regular sinusoidal waves are used in the predic- 
tion. 

seems to be overpredicted for small 6's by about 30% and underpredicted for large 

6's by about 20%. 

Finally, if we choose to use only 15 waves instead of 30, the resulting sag and 

hog fatigue damage agreement (see Fig. 1.15) with simulated data reduces for large 

6's. In this case, we choose 5 different wave heights based now on a transformation 

of Gauss-Laguerre quadrature points and for every wave height we choose 3 wave 

periods based on Gauss-Hermite quadrature points [35]. The resulting choices of the 

wave parameters are shown in Fig. 1.16. In quadrature point selection, the main idea 

is to transform N standard normal or exponential random variables that have been 

selected to give 2N - 1 moments exactly. Standard library routines can be used to 
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find these quadrature points which can then be transformed using Eqns. 1.14 or 1.15 

at corresponding fractiles of the random variables. 

To summarize, we considered four different prediction models above: (1) single- 

cycle regular wave model, (2) steady-state response due to regular wave, (3) single- 

triplet response due to 30 regular waves with side waves, and (4) single-triplet response 

due to 15 regular waves with side waves. We find that each of these four models predict 

at least the sag damage better than a linear model. The steady-state response offers 

an improvement over the single-cycle regular wave model. The predictions improves 

further on including side waves and stepping the ship through single-triplet for each 

selected H-T pair. Finally, the agreement with simulated damage degrades slightly 

when reducing the number of waves from 15 to 30. Note that estimation of stresses 

and the resulting fatigue damage in each of the four models took only about 10 to 15 

minutes of computer time on a HP 9000 workstation, while generation of 20 hours of 

simulated stresses from the random waves took about 6 days on the same computer. 

In the subsequent studies, we will consider model 3 (single-triplet prediction with 

30 H, T pairs) to be the base case model and attempt to further improve the agree- 

ment with simulated exact damage. 

We should recognize, however, that the level of agreement seen in any of the 

prediction models may be due to offsetting errors. For example, the model could 

be predicting too large bending moments from the limited wave runs, however, the 

absence of any scatter effects in the model could be causing a reduction in the resulting 

predicted damage from the too-large bending moments. By an absence of scatter 

effects, we mean using only a single stress value to represent several stresses, generally 

random in nature, in each H-T cell (see Sec. 1.6.2). 

In order to diagnose these effects, we should first compare the predicted bending 
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Figure 1.14: Damage prediction from response to selected waves with side waves. 30 
wave triplets have been used in the fatigue prediction. 

moments directly to the simulated bending moments. Any mismatch at the bending 

moment level should be corrected for, and then the scatter effects should be included 

to find fatigue damage. Another effect to be accounted for is the difference in the 

periods of the input wave cycle and resulting ship load cycle. We will look at the 

following effects in sequence to diagnose their impact on fatigue prediction: 

• Inclusion of cycle duration correction (Sec. 1.6.1): Typically, in an irreg- 

ular history of a given duration the number of wave cycles and the number of 

ship load cycles are different because the time domain analysis is not a static 

analysis. Prediction of damage per load cycle from damage per wave cycle 

thus may require a modification factor accounting for the duration difference 

that may exist between a load cycle and a wave cycle. 
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Figure 1.15: Damage prediction from response to selected waves with side waves. 15 
wave triplets have been used in the fatigue prediction. 

Inclusion of scatter effects in limited wave prediction (Sec. 1.6.2): In 

the NTF model, the idea is to consider only a limited, discretized set of wave 

height-period pairs, {H,T)i, and calculate the stress Si = S(H,T){ associated 

with each. The mean value E[Sb] - which is proportional to the mean damage 

- is then estimated from the NTF model as 

£[SVF = I>S(tf,n6 (1.19) 

Here p{ is the probability of falling into the z'-th (H - T) cell, centered at 

(H,T)i. Assuming this probability p{ is correct, the "true" value of E[Sb] under 
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Figure 1.16: Wave parameters of the 15 waves used for predicting ship response. The 
wave heights and wave periods have been obtained using quadrature points. (Note 
the largest wave period for the smallest wave height has not been shown in this plot, 
to facilitate direct comparison of these parameters to the ones in Fig. 1.11) 

the nonlinear simulations is 

E[Sb) = J2PiE[Sb\H,T} (1.20) 

Thus, the critical assumption of the NTF model is quasi-static behavior, so that 

a wave with height H and period T always produces the same stress S=S(H, T), 

irrespective of the past wave/stress history. In this case, because S is determin- 

istic given H and T, E[Sb\H,T]=S(H,T)b and the NTF result becomes exact. 

Deviations from quasi-static behavior will produce a scatter among values of S 

given the same H and T, and hence E[Sb\H,T] will generally exceed S(H,T)b 
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(at least for b > 1). This effect will generally be a function of both the ship and 

the seastate; it will be studied here for the particular ship and seastate under 

consideration. 

• Inclusion of bias correction (Sec. 1.6.3): Although we attempt to get unbi- 

ased load predictions from limited wave runs, we may have a bias in our model 

predictions, i.e., on average the predicted stress from a wave triplet may be too 

large or too small compared to a mean simulated stress corresponding to such 

waves from irregular waves. Any such biased estimates could be due to the 

inherent limitation of load prediction from short wave segments [30]. We may 

seek to correct for any such bias before we predict fatigue damage. 

1.6.1    Modeling Duration Correction Effects 

The mean damage rate based on ship load cycles is v{Di oc uiE[S% in which A is the 

mean damage per load cycle and vt is the load cycle rate. The mean damage rate 

in the NTF model is based on the wave cycles, since we estimate a single stress (sag, 

hog, or range) for a selected wave height and period. The mean damage rate from 

the NTF model then is uwD^ oc vwE[Sb], in which Dw is the mean damage per wave 

cycle and vw is wave cycle rate. Since the actual damage per unit time occurring 

on the ship is the same, whether based on load cycles or on wave cycles, we should 

have ui"Dl = ur~D^. In the NTF model, we base damage estimates on the theoretical 

wave cycles encountered, so E[Sb], which yields damage per load cycle, should be 

corrected appropriately to account for the duration difference between a load cycle 

and a wave cycle. Thus, we could say 

Du; = J±A;   or        Dw = ^Dt (1.21) 
V«, 1 load 
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in which Twave and Tioad are the periods of a wave and the corresponding ship load 

cycle, respectively. Thus, the total damage based on wave cycles (from Eqn.s 1.17 

and 1.21) is 

DP = T niS
b'^^i ;   n,- = no. of wave cycles in cell j (1.22) 

j=1 -Moadj 

where Twave,j/Tioad,j is the duration correction for the jth wave and predicted load 

cycles. 

In this study, we find when converting the damage per wave cycle to damage per 

load cycle, the impact of this correction on the damage estimate seems insignificant 

as Fig. 1.17 demonstrates. Notice how the inclusion of the duration correction makes 

practically no difference in the prediction in either the sag or the hog damage. An 

explanation for this may be that the damage-contributing loads have the load cycle 

periods very close to the underlying wave cycle periods, the analysis being quasi- 

static. We therefore propose not to include this correction in the subsequent results. 

1.6.2    Modeling Scatter Effects in Ship Loads 

For the waves shown in Fig. 1.11, each "+" denotes a wave pair and is considered 

to represent the mid-wave values of the wave parameters for the cell around it. We, 

then, represent the entire H-T domain by 30 cells (in this example), each of which is 

represented by the mid-cell H-T pair. We empirically model the scatter effects from 

the simulated load history by binning the 20 hours load history in this H-T space and 

modeling the resulting load scatter in each cell. In each load cycle, we identify the 

loads as, (1) sag: the maximum (positive) load in the cycle, (2) hog: the minimum 
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Figure 1.17:  Demonstration of impact of duration correction on predicted fatigue 
damage for sag and hog bending moments 
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(negative) load in the cycle, and (3) range (=sag+hog). The 2-dimensional binning 

of each of the ship loads is then based on the H-T of the wave cycle causing this load 

cycle. 

The mean /z and standard deviation a of the binned loads in every cell results 

in a coefficient of variation COV = <x//i of the ship loads. A straight line fit to this 

simulated COV vs. wave heights is referred to, in this study, as the empirical COV 

(see Figures 1.18 and 1.19). Here TUT2,TZ refer to the 84, 50 and 16 percentile 

conditional periods given the wave heights (see Fig. 1.11 for actual values of these 

periods). In general, the COV values in the cells may depend on the bin size. In this 

study, however, we find that making the 2D bins 4 times smaller or make it 2 times as 

coarse, still results in about the same COV values, suggesting that COV dependence 

on bin size seems to be insensitive to a broad range of bin sizes. 

In order to understand the impact of scatter effects on fatigue damage prediction, 

we bin the simulated bending moments according to the chosen 30 pairs of wave 

parameters, and then compare the exact simulated damage to that estimated only 

from the mean simulated loads S in the bins as done in the prediction models. The 

simulated damage without including scatter effects gives the total damage as 

Np —  b 
Dt = Y^ rij (s)       ;     rij = number of load cycles in cell j (1.23) 

Figure 1.20 shows a ratio of total damage from this model (Eqn. 1.23) to the exact 

damage (Eqn. 1.9). 

As seen, Eqn. 1.23 (damage without scatter effects) will underpredict the fatigue 

damage by as much as 25% for steel materials (b = 4) and by about 60% for composite 

materials (b = 10). Because of nonlinear effects, the hog loads are typically smaller 

than the sag loads (see Fig. 1.4), and so if scatter effects are ignored, the hog damage 

1 
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Figure 1.18: Coefficient of Variation (COV) of simulated ship loads (sag and hog) for 
H-T cells in Fig. 1.11 
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Figure 1.19: Coefficient of Variation (COV) of simulated ship loads (range) for H-T 

cells in Fig. 1.11 
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Figure 1.20: Demonstration of need for scatter estimate of response in H-T cells 
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is affected more than sag; also the range (= sag + hog) dominated by sag contribution 

is influenced by the scatter effects in a manner similar to the sag load. As a simple 

example, the extent to which scatter effects matter can be seen when estimating E[S2] 

from S: 

E[S2] = Var[5] + S2 = S2 (l + COV2) (1.24) 

where Var[5] denotes the variance of S. A factor 1 + COV2 larger than 1 is needed 

to inflate S2 to find E[S2] exactly; similarly, still larger factors will be required to 

estimate E[Sb] from S6 for b > 2. As demonstrated in the following sections, we strive 

to predict exact E[Sb] from a Weibull model calibrated only to the first two moments 

of S. 

In order to include scatter effects in the predicted damage, we use the NTF pre- 

dicted bending moment in a cell and the empirical COV in that cell to calibrate 

a Weibull model for the load in that cell. For a Weibull load (S) model with 

shape parameter a and scale parameter ß, the exceedance probability is P[S > s] = 

exp[-(s/ß)a], where a and ß are tuned to the NTF predicted bending moment and 

the COV in each cell. Fatigue damage, proportional to E[Sb], is then found from this 

fitted Weibull model as E[Sb] = ßbT(l + b/a). A weighted sum of this E[Sb] across 

all the cells results in the total predicted fatigue damage. 

Fig. 1.21 shows the predicted damage from the 30 wave triplets, including the em- 

pirical COV estimate, compared to exact damage for sag and hog bending moments. 

Inclusion of scatter effects for sag damage prediction, further improves the damage 

prediction. Now the predicted sag damage is within 10% error for all 6's shown in 

the plot. Again, compare this with the linear damage estimate in Fig. 1.5 that con- 

siderably underpredicts the sag damage. The hog damage, on the other hand, seems 

to be on the conservative side at all b values, on including the scatter effects. Note, 
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however, that at b = 1 the hog damage is overpredicted by about 35%, implying 

that this may be a case where triplet-wave hog moment prediction is biased towards 

too large hog moments. We will investigate this in the next section, where we will 

compare the predicted moments to the mean simulated moment in each cell. 

1.6.3    Inclusion of Bias Correction in the Prediction Model 

To compare predicted bending moments to the simulated bending moments, we bin 

the 20 hours of nonlinear bending moments according to the 30 H, T pairs (shown in 

Fig. 1.11). Figures 1.22 and 1.23 show a comparison of the mean simulated bending 

moments to the predicted bending moments in each H, T cell as a function of a = H/2. 

In this figure, Tl, T2, and T3 refer to the 16-, 50- and 84- percentile period values at 

the given H value (see Fig. 1.11 for actual values of the three periods given H). The 

predicted sag bending moment compares closely to the simulated sag moment, on 

average. This observation is in agreement with the close comparison we find for sag 

damage prediction at b = 1 in Fig. 1.21a. The hog bending moment is systematically 

overpredicted by approximately 20% and, consequently, the range bending moment 

is overpredicted by about 10%. These overpredictions may be due to an intrinsic 

limitation of the model in predicting hog moments from wave triplets. In any case, 

these overprediction factors can be treated as bias corrections to the predicted bending 

moments when estimating fatigue damage. As a result the predicted hog bending 

moments should be reduced by a factor of about 0.85 (« 1/1.20) and the range 

bending moment by a factor = 0.92 (« 1/1.0). The bias correction factors may 

also be found from Fig. 1.17b, where the model overpredicts the hog damage by 

approximately a factor of 1.35. Consequently the range (=sag+hog) moment will be 

overpredicted by a factor of about 1.175 [= (l+1.35)/2]. No bias correction will be 
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Figure 1.21: Demonstration of impact of inclusion of scatter effects in the predicted 
fatigue damage for sag and hog bending moments 
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applied to the sag bending moment damage prediction. We will now investigate the 

impact of these bias-corrections on fatigue damage. 

Fig. 1.24 compares the predicted hog damage, with and without any bias correc- 

tion, to exact damage. Note that all the hog damage predictions here include the 

scatter effects. As a result, the bias-corrected prediction is now from Weibull stress 

models in each cell, where a and ß have been tuned to the bias-corrected hog bend- 

ing moment and to the empirical COV from Figs. 1.18 and 1.19. Note how good 

the agreement in the predicted and exact damage is, when including the bias factor 

of 0.85. When a reduction factor of 0.75 is used, the first moment E[S], of course, 

matches the exact value, however, damage for b > 1 seems consistently underpre- 

dicted. Further investigation on an optimum choice of the bias factor has not been 

done in this study. Realize, however, that in order to calibrate any bias-correction 

factor, a limited nonlinear analysis will have to be performed on irregular waves, as 

similarly required in obtaining the COV corrections. 

Finally, we present a comparison of the NTF predicted damage together with the 

linear damage results compared to the nonlinear exact damage on the same plot. 

This is to directly study the difference in results. Note that no new results are 

being shown here, though. The NTF prediction includes bias-corrections for hog 

(factor=0.85) and range (factor=0.92) bending moments and includes the scatter 

effects for all three: sag, hog and range bending moments. Figures 1.25 and 1.26 

show a comparison of total fatigue damage in 20 hours in this example seastate 

from the NTF model and from linear theory compared to simulated total nonlinear 

fatigue damage for a range of S-N exponents. Recall the significance of this example 

seastate is that according to linear theory it contributes most to the long-term fatigue 

damage (see Fig. 1.6) for an S-N exponent of 4. As seen in Fig. 1.25a, linear theory 

« 
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Figure 1.23: Ratios of predicted to mean simulated (range) bending moments in H-T 
cells 

considerably underpredicts fatigue damage for sag bending moments, while the NTF 

model offers excellent prediction over the entire range of S-N exponents. For hog 

fatigue damage, the NTF prediction is much closer to simulation than is linear theory. 

For range bending moments, considered in damage prediction using Miner's rule, we 

see that linear theory underpredicts damage while the NTF prediction is very close 

to simulation. 

In summary, linear theory considerably underpredicts sag and range loads and 

damages, while the NTF model offers excellent agreement with the nonlinear loads 

and damages. 

Note that the 20 hours of nonlinear irregular wave simulation used in this study 

took about 160 hours (« 6.5 days) of total computer time, while the NTF model 

without the COV or bias correction took only about 10 minutes of computer time. 

« 
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Figure 1.24: Effects ofincluding bias-correction in hog damage prediction 

While the complete nonlinear analysis is only a 2-D analysis, a 3-D analysis of the 

nonlinear responses is predicted to take about 10 to 20 times longer than the 2-D 

analysis. In conclusion, the NTF model appears to offer an economical alternative to 

complete nonlinear time domain analysis for estimating fatigue damage. 

1.7    Conclusions and Future Work 

1.7.1    Conclusions 

In this study, we propose a "Nonlinear Transfer Function" model for estimating fa- 

tigue damage from a limited set of sinusoidal waves and their associated probabilities 

from stochastic process theory. A simple version of the NTF model, where for each 
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of S-N Exponents 
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Figure 1.26: Linear, NTF, and Nonlinear Bending Moment (Ranges) Fatigue Damage 
for Range of S-N Exponents 

selected wave height and wave period we construct side waves and apply the wave 

triplet on to the ship. The resulting set of stress (sag, hog, and range) for selected 

set of waves, along the theoretical probabilities of seeing the waves can be used to 

find predicted fatigue damage estimates. This damage estimate agrees well with that 

estimated from a complete random wave analysis, which is general is an expensive 

calculation. A linear analysis, on the other hand, appears to severely underpredict 

the sag-induced damage, while the hog damage seems to compare with the nonlinear 

time domain analysis in random waves. Note the NTF predicted damage took on the 

order of minutes of computer time, while the random wave analysis studied here took 

about 8 hours of computer to simulate 1 hour of stress time histories. 

The agreement in the NTF prediction can be improved further by accounting 

scatter effects in the observed stresses.   The hog damage estimation appeared to 
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require a bias correction in addition. We propose use of short duration simulations 

in random waves in order to estimate the scatter effects and to estimate the bias 

factors for hog and range stresses. This still alleviates the need for long simulations 

to find exact fatigue damage estimates. For this flared ship in ship-length tuned 

seastate considered, we find the current state-of-the-art spectral analysis methods to 

yield considerably unconservative sag fatigue damage, and overpredict hog fatigue 

damage, and find that the NTF model offers a cheaper alternative and yields a more 

precise estimate of fatigue damage when compared to that from nonlinear time domain 

analysis in random waves. 

Further studies should be done to investigate generalities of this model: across 

different ship models, across different seastates. We speculate that the NTF model 

(single-triplet predictions) should be able to successfully predict damage in other 

seastates as well, since the seastate chosen here was supposed to severely test the 

model. 

1.7.2    Future Work 

The NTF predictions were compared to the nonlinear analysis results in a single 

seastate. We suggest additional comparisons be performed in other seastates as well; 

and finally compare the long-term predicted damage from the NTF model to sim- 

ulated long-term damage from the nonlinear analysis. The nonlinear analysis could 

be performed across a set of climate conditions (HS1 Tp) with probabilities chosen to 

reflect the long-term distribution of these parameters. The simulated damage in each 

of these seastates could be weighted and summed to result in a long-term damage 

from the nonlinear analysis. The NTF model, on the other hand, may be used to 

predict fatigue from a selected set of wave heights and wave periods whose occurrence 
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probabilities reflect the long-term distribution of the wave parameters. The nonlinear 

stresses from these selected waves can then be used to predict the long-term NTF 

fatigue damage. An agreement in these two long-term damage estimate will further 

test the NTF model capabilities. We could similarly predict and compare long-term 

fatigue damage from a linear analysis as well to demonstrate performance of linear 

analysis in predicting long-term fatigue damage. 

As part of the future work, we also recommend that the NTF model studies be 

generalized to other seastates, other loads on the ship, other ship models, and to other 

ship analysis programs. Finally, impact of nonlinearities in the waves on fatigue in 

ship can be investigated by analyzing the ship in waves simulated from the second- 

order wave model, instead of using linear (Gaussian) waves. 
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Chapter 2 

Ship Fatigue Reliability 

2.1 Introduction 

This chapter describes a fatigue reliability analysis for the ship structure considered 

in Chapter 1. A general methodology for fatigue analysis is presented and numerical 

results are shown for a specific application to ship structures. The methodology 

presented here is largely adapted from Reference [17]. 

2.2 General Fatigue Formulation 

The assumption is that a complete reliability formulation generally includes uncer- 

tainly in three distinct aspects: 

1. The loading environment, characterized here by random variables; 

2. The gross level of structural response, given the load environment; and 

3. The local failure criterion, given both the load and the gross stress response. 

53 
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The general fatigue formulation requires three functional inputs: fXl (xi), fS\Xi (s\xi) 

and Nf(s) to characterize the load, response and fatigue damage, respectively. Here 

fxAxi) is probability density of the environment variable Xi, fs\xAs\xi) is condi- 

tional probability density of the gross stress S given Xi and Nf{s) is the number of 

constant stress cycles with amplitude s after which the component fails. The mean 

damage rate D is found by integrating over all load and response levels x\ and s: 

D=r rfw^K^dsdx! (2.i) 
7x1=0 Js=o Nf{s) 

If failure is defined when damage reaches a threshold A, we have the time to fail 

7) = A/(/oE) (2-2) 

where /0 is the stress cycle rate. If Miner's rule is correct we would assign A = 1. 

More generally, variability in A would reflect the uncertainty in Miner's rule, i.e., 

the effect of predicting variable-amplitude fatigue behavior from constant-amplitude 

tests. 

For the reliability analysis, the failure criterion is taken to be the difference be- 

tween the computed fatigue life 7) in Eqn. 2.2 and a specified target lifetime, Tt. 

G(X) = Tf-Tt (2.3) 

G(X) is known as the failure state function that depends on all the associated random 

variables X. G(X) is positive when the component is safe and negative when it has 

failed. First-order reliability methods (FORM) [24] can be used to find the failure 

probability, Pf = Prob.[G(X) < 0]. 
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We examine each of these in turn below for an offshore structure. 

2.2.1    Load Environment 

We assume that the long-term environment can be characterized by one environment 

variable Xx. This could be Hs, the significant wave height describing the short-term 

climate conditions. A distribution of Xx should be chosen to describe the long-term 

variation of the climate along the ship route (e.g., [8]). In this study, we choose the 

wave heights H, instead, as the environment variable Xu and describe it by a long- 

term Weibull distribution. Note that H is a local wave height that is the distance 

from the minimum elevation to the maximum elevation in wave cycle. Here, a wave 

cycle is the wave surface between two mean upcrossings. 

In a short-term seastate with given Hs (typically lasting 1 to 6 hours), we assume 

H to be Forristall distributed (see Reference [15]). Note that in the ship fatigue 

analysis studies (Chapter 1), we had found that the Forristall model well predicted 

the simulated wave heights. This short-term distribution is given as 

Prob.ffl" > h] = exp 
(h/av) 2.126 

8.42 
(2.4) 

in which CT„ = Hs/A. The long-term distribution /LT^LT) of the wave heights can be 

found from the short-term Forristall distribution fsr(h\Hs) given Hs as 

fLT(hLT)=r   fsT(h\Hs)fH,(hs) dhs (2.5) 
Jh3=0 

in which /tf5(fc«)is tne long-term distribution of Hs. To demonstrate the methodology 

in this study, we arbitrarily assume Hs to have a Weibull distribution with mean 

E[HS] = 3 meters and variance Var[#s] = 3.6 m2 [24]. fLT(hLT) in Eqn. 2.5 above, 
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is approximated to be a two-parameter distribution type. The two parameters are 

calibrated to the first two moments E[HLT] and E[HlT] of the long-term wave heights. 

These moments can readily be found from the conditional distribution as 

E[HLT] = EHB[E[H\HS}} ;   E[HlT) = EHa[E[H2\Hs]) (2.6) 

where EH,\\ indicates taking expectation of random variable Hs. From these calcula- 

tions we find the mean and the coefficient of variation (COV) of the long-term wave 

heights to be: 

E[HLT] = 1.81meters COV[HLT] = 0.857 

2.2.2    Gross Response 

The stress response at the location of interest is, in general, random in nature and 

dependent on the underlying environment X\. The stress may be described by a 

conditional distribution /s|x,(s|zi), which is assumed to be a two-parameter distri- 

bution type in this study. The two parameters are found from the conditional mean 

and standard deviation of of the stress S given the environment variable Xi denoted 

S\Xi. In this application, we assume that the stress S given X\ has a Weibull distri- 

bution type, whose parameters can be found from the mean and standard deviation 

of the conditional stresses. 

For this study, we select the same ship as considered in Chapter 1 and use the 

nonlinear time domain analysis program NV1418 [11] to find the stresses in random 

wave conditions. We again select the seastate described by Hs = 5m and Tp = 10s to 

analyze the ship response. Recall that this was the most damaging seastate according 
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to a linear analysis and expect to be so even according to a nonlinear analysis. The 

mean relation of S\H found from this seastate should, generally, be applicable for 

all wave heights H regardless of the seastate. The wave period dependence of the 

stresses (ignored in this study) may, however, effect the scatter of stresses about the 

mean regression line; and this scatter is likely to be seastate- or Tp-dependent. 

For each wave height in this one hour seastate we find the corresponding bending 

moments (sag, hog, and range) in the response history. A regression analysis of the 

form E[S\H] = aHp was performed, to fit the mean bending moment (or stress S) 

given H. We used a nonlinear least-squares regression method called Levenberg- 

Marquardt method [28] as implemented in Gnuplot [34] to estimate the mean values 

of the parameters a, p, their standard errors aa, ov and correlation pap for this data 

set. The standard errors reflect the uncertainty in the estimated parameters due to 

limited data. The regression assumed a constant conditional standard deviation as\H, 

although this scatter should generally increase with increasing wave heights. In this 

illustration, we assume that the bending moment can be converted to stresses by 

simply dividing by an appropriate section modulus. 

Note that the regression is based on only one seastate, the most damaging seastate. 

The mean regression line is assumed to be valid across all the seastates. The variability 

of stresses GS\H about this mean trend, in general, may vary across different seastates. 

In this example, however, we will assume no uncertainty in the estimated OS\H- 

As mentioned earlier, from one hour simulation of bending moments in irregular 

seas (Hs = 5m and Tp = 10s), we relate the wave heights to the corresponding sag, 

hog, and range bending moments (BM) assuming the following functional form: 

E[BM\H] = aHp (2.7) 
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Table 2.1: Estimated mean and standard deviation of the regression parameters for 
bending moments (kN.m) given wave heights. The bending moments have been di- 
vided by 105. 

Moment a oa P ap Pap GS\H 

Sag 
Hog 

Half-Range 

0.453 
0.617 
0.504 

0.0284 
0.0354 
0.0276 

1.168 
0.619 
0.951 

0.0404 
0.0410 
0.0366 

-0.972 
-0.945 
-0.965 

0.746 
0.593 
0.592 

Figs. 2.1 and 2.2 show the resulting regression fits to the simulated bending moments. 

Table 2.1 gives the numerical values of the estimated parameters. 

In converting the bending moments to stresses we will use a constant section 

modulus (= 35 m3, here). In the subsequent reliability analysis, we will addition- 

ally multiply the stresses by 10"3 to convert to units of MPa (or N/mm2) so as to 

consistently use the S-N data also given in MPa. 

2.2.3    Failure Measure 

We assume that fatigue test data are available at constant stress amplitudes to esti- 

mate the S-N curves. These curves present the number of stress cycles to fail for a 

given constant stress amplitude load on the fatigue specimen. We use Miner's rule 

to assign damage 1/Nf(s) due to a single stress amplitude s. The fatigue damage is 

then characterized by D, the mean damage rate. Any variation about the mean rate 

will average out when accumulating damage across the high-cycle fatigue applications 

of interest here. As a result the fatigue damage is characterized by only the mean 

damage rate D, and hence by only the S-N curve. 
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Figure 2.1: Nonlinear least squares regression analysis to fit sag, and hog bending 
moments to wave heights from 1 hour simulation of bending moments in seastate with 
Hs = 5m, and Tp — lOsec. 



60 CHAPTER 2.   SHIP FATIGUE RELIABILITY 

Simulatjgn 
0.504H0-951 

2 4 6 8 
Wave Heights H (m) 

10 

Figure 2.2: Nonlinear least squares regression analysis to fit half-range bending mo- 
ments to wave heights from 1 hour simulation of bending moments in seastate with 
Hs = 5m, and Tp = lOsec. 

As described in Chapter 1, typically the S-N curve is specified as 

N = CS -b (2.8) 

where C, b are the intercept and the slope of the fitted curve to log S to logJV data. In 

general, both C and b are random in nature and C typically shows a large uncertainty 

- COV of the order of 50 to 60%. The regression relation gives the mean number of 

stress loading cycles N with amplitude S that a fatigue specimen can tolerate before 

failing [12]. Typical values of b for steel material may be 3-6, and may be as high 

as 7-10 for composite materials. Values of S-N parameters for offshore structure 

materials and their uncertainties can be found in various literature, including API [2] 
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and SSC reports [26] among others. 

2.3    Results 

2.3.1    Numerical Values for Random Variables in Fatigue Anal- 

ysis 

Recall that the sag stresses cause fatigue cracks at the ship bottom and the hog 

stresses cause fatigue cracks in the ship deck. Other approaches use the stresses 

due to the range bending moments to analyze the fatigue cracks at either of these 

locations. Of interest is the fatigue reliability of an element (here, at the ship bottom 

or the ship deck) in a specified lifetime. We will show that using the sag, hog or 

range stresses generally leads to different estimates of reliability or the probability of 

failure. 

The input random variables in the example fatigue analysis and their values are 

given in Table 2.2. The random variables listed here are common to the three stress 

cases (sag, hog, and range) we consider here. The COV values in Table 2.2 have 

been arbitrarily chosen and should generally reflect the uncertainty in the parameters 

either due to limited data or due to lack of knowledge. The parameters relating 

stresses to wave heights are given in Table 2.1. To calibrate the median time to fail 

ff to a desired lifetime, we introduce an additional factor 5 in Eqn. 2.2 so that we 

have 

In this equation, we set all the random variables to their median values and calibrate 

6 so that we get ff = 200. Table 2.3 gives the values for 8 for each of the three cases. 
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Table 2.2: Numerical values of means and COVs of random variables and their dis- 
tribution types used in fatigue formulation. These are common to all three stresses: 

sag, hog and range. 

Variable Mean COV Dist.Type Description 

E[XX] 1.81 (m) 0.05 Normal Mean of Long-term H 

COV[*i] 0.857 0.1 Normal COV of long-term H 

/o 0.1 (Hz) 0.2 Normal Stress cycle rate 

SCF 2.5 0.1 Normal Stress concentration factor 

C 2.4xl015 0.5 Weibull S-N factor 

b 4 0 - S-N exponent 

A 1 0.1 Normal Damage threshold 

Table 2.3: Calibrated factor S for the three cases: sag, hog and range. Note that S is 
a deterministic variable. 

Variable Sag Hog Flange 

6 0.02084 0.003463 0.007669 

Using the above random variables, we performed a FORM analysis to find the 

failure probabilities for a range of specified target lifetimes. In order to find the failure 

probabilities, all the random variables X are first transformed into a uncorrelated 

normal [/-space. The failure state function G{X) = 0 is evaluated in the normal 

[/-space and gradient search methods are employed to find the point on the failure 

surface closest to the origin. This is the most likely failure point and is also referred to 

as the design point. Approximation of the failure probability if obtained by fitting a 

tangent plane (first-order reliability method, FORM) or a parabolic surface (second- 

order reliability methods, SORM) to the failure state function at the design point. 

The direction cosines of the vector that defines the design point are the relative 

measures of the importance of each of the random variables. 

Fig. 2.3 compares these failure probabilities for the three different cases.   The 
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Pf estimates are somewhat different for the three stress cases. For a given target 

lifetime, the sag stress gives the largest Pf followed by range stress, and then the hog 

stress Even though the median time to fail is the same in all the three cases, we see 

such a difference because of the different conditional trends of the stresses given the 

wave heights that imply different magnification of the wave parameter uncertainty. 

Since the sag trend shows the largest nonlinearity, the wave parameter uncertainty 

is amplified the most among the three and this results in the largest Pf for given 

service lifetime. For example, at around the typical design life of 20 years, the sag 

case gives Pf = 0.011, the range case gives Pf = 0.0093, while the hog case gives 

Pf = 0.0081. Recall that hog stresses may cause cracks in the ship deck, while the 

sag stresses cause cracks in the ship bottom. The Pf comparison then implies that 

the element at the ship deck is about 1.4 times as likely to fail compared to the ship 

bottom element, even though both have Tf = 200 years. 

2.3.2    Importance Factors of Physical Random Variables 

Table 2.4 gives the values of the random variables at the design points and their 

uncertainty contributions (squares of the direction cosines) for each of sag, hog and 

range cases. 

The values of the random variables at the design point can be used to design 

the structural element and the FORM analysis would predict the design to yield the 

reliability level as indicated in Fig. 2.3 for a service life of 20 years. This table also 

indicates the relative importance or uncertainty contributions of the different random 

variables. In all the three cases, we see that the S-N factor C carries the most 

importance, followed by the SCF and the environment variables. The environmental 

variables seem to relatively more important in the sag case than in the hog case. This 
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Table 2.4: Values of associated random variables at "failure" point and their uncer- 
tainty contributions (for Service life of 20 years) 

Sag Case 
Var. Value Uncert. Contrib. 

E[X,] 
COVpfi] 

a 

1.842 
0.917 
0.450 

0.024 
0.094 
0.002 

P 1.173 0.003 

/o 0.1066 0.021 
SCF 2.664 0.082 

C 4.495E+14 0.769 
A 0.982 0.006 

Hog Case 
Var. Value Uncert. Contrib. 

E[XX) 
covpd] 

a 

1.819 
0.8669 
0.6170 

0.002 
0.002 
0.000 

P 0.6199 0.001 

/o 0.1067 0.020 
SCF 2.668 0.078 

C 3.260E+14 0.891 
A 0.9815 0.006 

Half-Range Case 
Var. Value Uncert. Contrib. 

E[XX) 
COV[Xi] 

a 

1.830 
0.8965 
0.5019 

0.009 
0.038 
0.001 

P 0.9548 0.001 

/o 0.1067 0.020 
SCF 2.667 0.080 

C 3.722E+14 0.844 
A 0.982 0.006 
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Figure 2.3: Failure probabilities for a range of target lifetimes for the three stresses: 
sag, hog and range 

again is due to the nonlinearity in the stress to wave height relation where the sag 

stress amplifies the uncertainty contribution of the environment variables more than 

the hog stress. In the range case, the environment importance seems to be between 

the sag and hog cases. 

In the next section, we illustrate how techniques based on FORM - in particular, 

the inverse FORM method - can be used in design of fatigue-sensitive components. 

For purposes of illustration, we focus on a two variable case which assumes only the 

values of SCF and of C to be uncertain. The general approach can be extended to a 

larger number of variables, however. 
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2.4    Selection of Material Properties in Design to 

Achieve Desired Reliability 

In the previous section, we saw that the stress concentration factor SCF and the S-N 

factor C seemed be of most importance compared to the other associated random 

variables in the fatigue analysis (especially true in the hog stress case). Here we 

demonstrate a methodology to select the SCF and C values for an element design, 

assuming these two variables carry all of the importance. This selection is to be based 

on the objective of achieving a certain given reliability ß in the fatigue design. 

2.4.1    Forward FORM 

We first restate the forward FORM problem, where the analysis proceeds as shown 

in the previous section for sag, hog and range stresses. Here, the distributions of SCF 

and C are specified and we find the resulting reliability level from FORM analysis. 

Eqn. 2.2 can be rewritten as 

TV = —  (2.10) 
1     f0SCFb E[Sb] 

in which we assumed D is given as E[Sb)/C scaled by the SCF. In this example, 

we will model the only uncertain parameters, SCF and C, as independent lognormal 

variables: 

SCF = K£SCF;    C = Cec (2-11) 

in which K and C are the median values of the random variables SCF and C, respec- 

tively. eSCf and ec are unit median lognormal variables with coefficients of variation 

VSCF and Vc, respectively. The remaining parameters in Eqn. 2.10 are assumed to be 
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deterministic. We can rewrite T/ as 

£c 
eSCF 

in which ff now indicates the median time to fail. Recall this was taken to be 200 

years in the fatigue analysis example. Note that the assumption of only two variables 

that are independent and lognormally distributed is not critical here. 

The G(X) function 2.3 can be conveniently rewritten as 

where 7 = ff/Tt is a ratio of a design lifetime to a specified service lifetime. Larger 

7 values indicate smaller service lifetimes compared to the design lifetime. 

For the forward FORM problem, we choose 7 = 10 implying the design life is 10 

times the service life and assume VSCF = 0.1, Vc = 0.5 (as in the earlier example). 

The S-N exponent b = 6, say. We find the failure probability to be Pf = 1.27xl0~3 

or reliability ß = 3.02 and the design point is e*c = 0.41, e*SCF = 1.267. This says 

that we need to choose about 41% of the median C value (S-N curve) and should 

increase the median SCF by about 27% to get a ß of 3.02. If we wish to use another 

material (another b value), we will need to rerun the forward FORM analysis to find 

the resulting reliability. This reliability will be different than 3.02, in general. Now, 

in a design scenario, where we wish to achieve a specified ß value and then find the 

design point e*c and e*SCF when using different materials, it is easier to solve the inverse 

FORM problem. 
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2.4.2    Inverse FORM 
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The idea of an inverse FORM analysis is to select the design parameters to achieve a 

certain given reliability ß. This idea has been demonstrated earlier to provide envi- 

ronmental contours for structural response analysis [36] of offshore structures against 

ultimate collapse limit states. This idea also finds application in earthquake engineer- 

ing [3] where magnitude-distance contours are provided for performing probabilistic 

seismic hazard analysis of structures. 

The first issue in the inverse FORM analysis is to find the locus of all points 

in the normal [/-space each of which would yield the same probability of failure for 

a failure state function passing through the point as a tangent line. This locus of 

points for the two-variable case happens to be a circle of radius ß around the origin. 

This is shown in Fig. 2.4, where the dashed line indicates G(X) = 0. The circle in 

{/-space (Ui, U2) can be transformed to the physical space (ec and £SCF) by first 

transforming Ux marginally and then conditionally transforming U2 using the given 

distribution functions of the physical variables. The transformed circle is what we 

call as a "material" contour. 

Note that the material contour only depends on the distributions of ec and eSCF- 

This contour can be estimated regardless of the S-N exponent b and regardless of the 

design life to service life ratio 7. Given this contour, one can now design against a 

worst-case scenario. In this case, we search along the contour for the largest possible 

7 (minimum fatigue life) for a desired b value. Usually the physics of the problem 

gives a good insight into where this design point might be on the contour, in which 

case the search can be localized to a smaller region. 

For the example problem in this study, Fig. 2.5 shows the resulting material 

contour for SCF and C for a Pf = 1.27xl0"3 (ß = 3.02).   Recall this was the 
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Ü 
CO 

Figure 2.5: Material contour: Locus of points of ec and eSCF for which FORM method 
gives a reliability ß = 3.02 

to predict fatigue damage using the long-term distribution of the wave height H and 

periods T. Such a scheme can be easily implemented in the FORM analysis. 

Alternatively, we could assume the ship load (mid-ship bending moment) to be the 

result of a second-order nonlinear system, and given the wave input seek to identify 

the first- and second-order transfer functions that define the system. Once these 

transfer functions are estimated, we can readily find the moment-influence coefficients 

(see Reference [15]: Eqns. 1.6 and 1.7) for the given seastate parameters (Hs, Tp). 

Using these moments, we can calibrate a distribution of the stresses and then find 
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Figure 2.6: Design choices of ec and £SCF for different S-N exponents b that result in 
desired reliability ß = 3.02 

the resulting fatigue damage in this seastate. The long-term damage can be found by 

summing such damage estimates across a set of selected seastate parameters [31,32]. 

These parameters may be selected, for example, at the quadrature points of the joint 

distribution of the parameters to efficiently calculate the long-term damage. 

2.5.2    Future Work 

In modeling the response (5) given the environment (H) denoted as "S\H", we chose 

the form E[S\H] = aHp, in which a and p were found from regression analysis using 
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one hour of stress simulation in a specific seastate. This was the most damaging 

seastate according to a linear analysis. We suggest investigating the impact on P/ 

when using simulations in other seastates to estimate a and p. 

Another suggestion is to extend the fatigue reliability analysis to include the NTF 

scheme to predict fatigue damage using the long-term distribution of the wave height 

H and periods T. Such a scheme can be easily implemented in the FORM analysis. 

Alternatively, we could assume the ship load (mid-ship bending moment) to be the 

result of a second-order nonlinear system, and given the wave input seek to identify the 

first- and second-order transfer functions that define the system. Once these transfer 

functions are estimated, we can readily find the moment-influence coefficients (see [15]: 

Eqn. 1.6 and 1.7) for the given seastate parameters (Hs, Tp). Using these moments, we 

can calibrate a distribution of the stresses and then find the resulting fatigue damage 

in this seastate. The long-term damage can be found by summing such damage 

estimates across a set of selected seastate parameters [31,32]. These parameters may 

be selected, for example, at the quadrature points of the joint distribution of the 

parameters to efficiently calculate the long-term damage. 
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